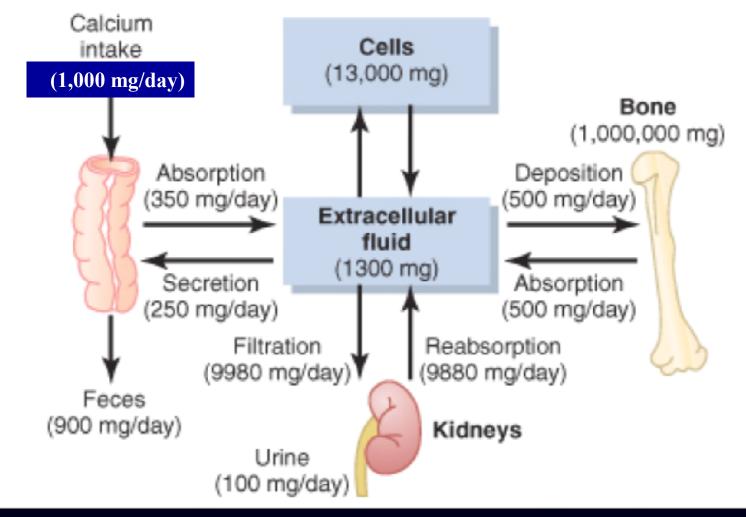
EMERGENCY MANAGEMENT OF HYPOCALCAEMIA AND HYPERCALCAEMIA

BRIG WAQAR AZIM MBBS, MCPS, FCPS, Dip Family Med Head of Chemical Pathology Department Army Medical College, Rawalpindi

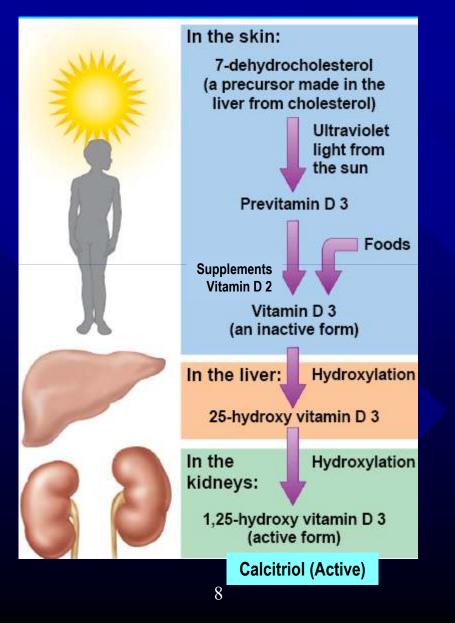

Physiology of Calcium

- 98% of the body calcium is in the skeleton
- Only 2% is circulation and only half of this is free calcium (ionized Ca⁺⁺)
- Free calcium is physiologically active
- The remainder 1% is bound to proteins
- Serum ionized calcium is the free form of calcium

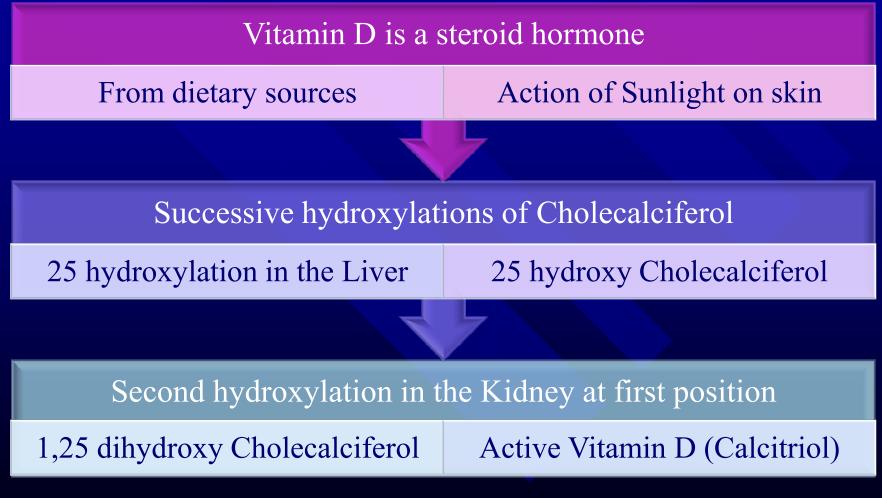
Calcium Homeostasis

Calcium Homeostasis

Calcium Metabolism


Hormonal regulation of Calcium

Hormone	Effect	Bone	Gut	Kidney
PTH	↑ Ca ↓ PO ₄	Increases Osteoclasts	Indirect via Vit. D	Ca reab PO ₄ exr.
Vitamin D3	↑ Ca ↑ PO ₄	No direct action	$\begin{array}{c} \uparrow Ca \uparrow PO_4 \\ \uparrow absorption \end{array}$	No direct effect
Calcitonin	↓ Ca ↓ PO ₄	Inhibits Osteoclasts	No direct effect	Ca & PO ₄ excretion


Corrected Serum Calcium

Corrected total calcium (g/L) =[(Measured total calcium g/L) + $\{(40 - \text{measured albumin g/L}) \ge 0.02\}$ Example: $[3 + {(40 - 24) \times 0.02}] =$ $[3 + (16 \times 0.02)] = 3 + 0.32 = 3.4 \text{ mmol/L}$

Vitamin D Metabolism

Formation of Calcitriol

Calcium Homeostasis

PTH

- 4 PT glands
- 84 AA hormone
- Low Calcium stimulates it

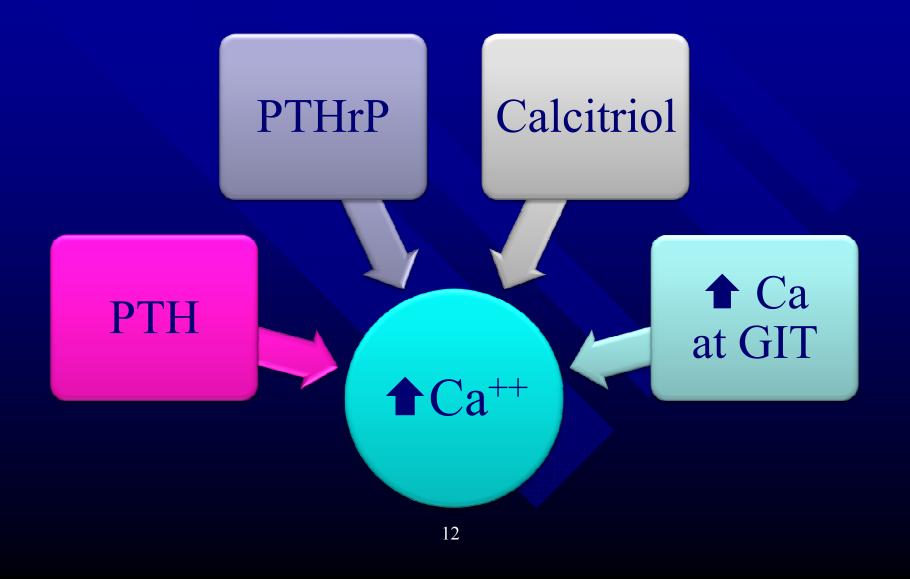
Calcitriol (D)

- Active bone formation
- Main effect is on the Gut
- PTH ↑ Vit. D

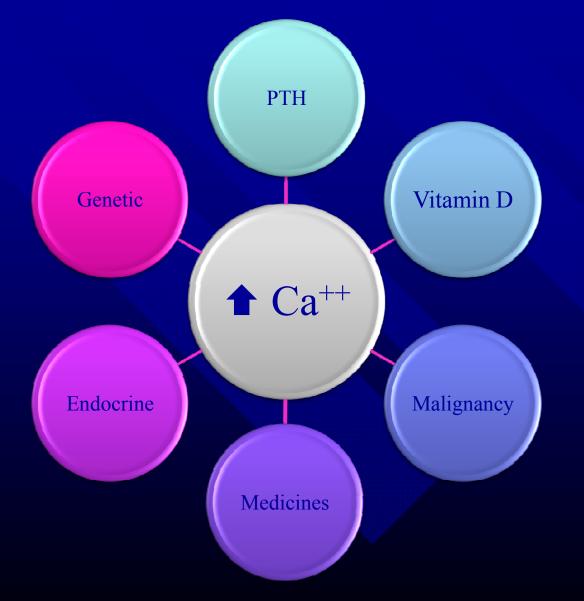
Calcitonin

- Para follicular C of Thyroid
- 34 AA hormone
- On Kidney

Hypercalcemia Grading



Moderate -3 to 3.5 mmol/L


Mild -2.6 to 2.9 mmol/L

Normal -2.1 to 2.5 mmol/L

Hypercalcemia

Causes of Hypercalcemia

Hypercalcemia

- Occasionally encountered in Practice
- Diagnosis often is made incidentally
- The most common causes are primary hyperparathyroidism and malignancy
- Diagnostic work-up includes measurement of serum calcium, intact parathyroid hormone history of any medications
- Hypercalcemic crisis is a life-threatening emergency

Investigations

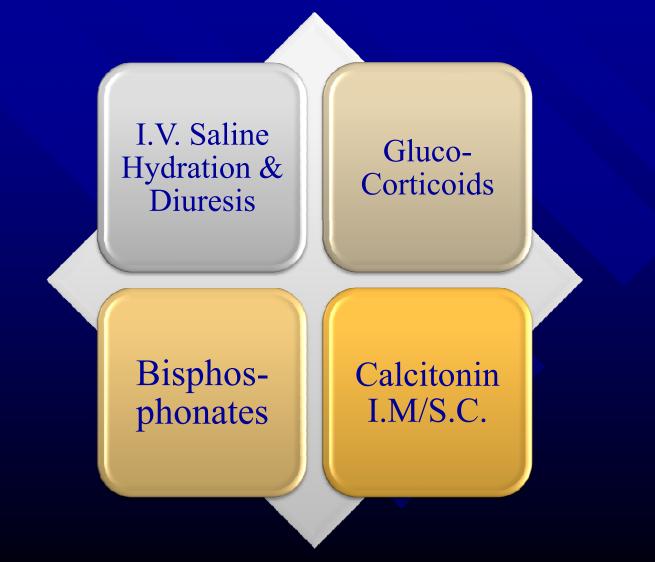
- Plasma calcium and albumin
- Plasma phosphate
- Plasma alkaline phosphate
- Plasma Urea
- Plasma parathyroid hormone
- Vit D
- Plasma HCO₃⁻
- Urinary calcium excretion
- Urinary phosphate excretion

- Urinary hydroxyproline
- Urinary cyclic AMP
- Radiology
 - Ultrasound
 - X-ray
 - CT Scan

Important Issues

- Most often asymptomatic Incidental Diagnosis
- Mild Hypercalcaemia is asymptomatic
- Most important cause is hyperparathyroidism
- Diagnosis is needed to decide the treatment
- Optimal step by step evaluation is a must.

Treatment of Hypercalcaemia


Volume repletion and diuresis

- NaCl 0.9% 4 L in first 24 h
- Loop diuretics (furosemide has calciuretic effects)
- Bisphosphonates IV (Pamidronate)
- Corticosteroids (prednisone 30 60 mg daily) are the drugs of choice if granulomatous disease or vit A or D intoxication is the cause

Treatment

- Calcium < 3 but > 2.5 mmol/L no appreciable clinical benefit – they need evaluation
- Any patient with serum calcium > 3 mmol/L should be aggressively treated
- Calcium > 3.5 mmol/L is Hypercalcemic crisis
- Always correct the calcium value for albumin

The Four Treatment Modalities

Hydration and Diuresis

- Vigorous I.V. NaCl Diuresis N Saline
- Adequate hydration urine out put must be maintained 200 ml/hour = 5 L /day
- The safest and most effective treatment of Hypercalcemic crisis is saline rehydration
- Once the urine out put is maintained give I.V.
 Furosemide a loop diuretic in low doses of 10 to 20 mg

Calcitonin

- In severe hypercalcaemia refractory to saline diuresis
- Calcitonin (Zycalcit, Miacalcin) 6 -8 U/kg IM/SC (400 iu) given every six hours.
- This treatment has a rapid onset but short duration of effect
- Patients develop tolerance to the calciumlowering effect of calcitonin

Bisphosphonates

- Zoledronic acid 4 mg IV diluted in 100 ml of N Saline - over at least 15min /month
- Pamindronate 60 mg IV infusion over 4 h initial – repeated after a month
- Etidronate 7.5 mg/kg IV over 4 h daily for 3-7 d; dilute in at least 250 ml of sterile N Saline
- They inhibit bone resorption, inhibit the Osteoclastic activity.

Other Treatment Options

- Dialysis for refractory Hypercalcemic crisis
- Parathyroidectomy for adenomas
- Treatment of the underlying cause Eliminate drugs
- Plicamycin (Mithracin) 25 mcg/kg/d IV for 4 d
- Gallium nitrate (Ganite) 100 mg/m²/d IV for 5 days in 1 L of NS or 5% Dextrose
- Cinacalcet (Sensipar) 30 mg PO od (increases sensitivity of calcium sensing receptor)
 23

Take Home Points

Hypercalcaemia is often asymptomatic Screen all suspected by doing Serum Calcium ■ If elevated, do I-PTH and follow algorithm 90% Hyperparathyroidism and malignancy Vitamin D toxicity is an important cause Thiazide diuretics common cause, Vitamin A Adequate hydration - N Saline + Furosemide Calcitonin + Zoledronic acid main stay of treatment.

Acute Hypocalcaemia

HYPOCALCEMIA < 2.1 mmol/L)

Overview

- Symptoms usually start developing at level < 2.1mmol/L
- < 1.6 Severe hypocalcemia leading to tetany
- Symptoms related to skeletal & muscle contraction
- Etiology
 - Decreased parathyroid hormone
 - Malabsorption of calcium (Pancreatitis, GI diseases)
 - Marked deficiencies of dietary calcium and/or Vit D
- Laboratory = Ca < 2.1 mmol/L

Clinical Picture of Acute Hypocalcaemia

Symptoms

- Perioral numbress
- Tingling parasthesias
- Muscle cramps
- Carpopedal spasm
- Seizures

Signs

- Hyperreflexia
- Chvostek's sign
- Trousseau's sign
- Hypotension
- Bradycardia
- Prolonged QT interval
- Arrhythmias

Chvostek's sign


Trousseau's sign

HYPOCALCEMIA:

Physical Assessment/ Clinical Manifestations =

TETANY, paresthesias

•Bronchial muscle spasm, laryngospasm leading to respiratory arrest

Hypocalcemia: Calcium Food Sources (which 2 do not belong?

broccoli

Cream cheese

Spinach

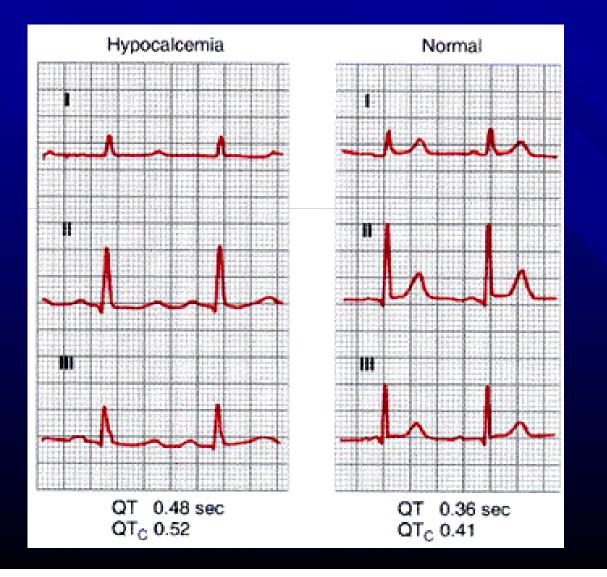
Ice cream

Sardines

cheese

Canned salmon

tofu


Skim milk

yogurt

31

ECG in Hypocalcemia

32

Causes of Acute Hypocalcemia

Hypoparathyroidism - Destruction of parathyroid » Most commonly surgical – parathyroid resection or accidental - Acute hypomagnesaemia Reduced 1,25(OH) vit D - Chronic renal insufficiency Acute systemic illness – Drugs: ketoconazole, doxorubicin, cytarabine

Causes of Acute Hypocalcaemia

Increased uptake of calcium in bone

Osteoblastic metastases
Hungry bone syndrome

Complexing of calcium from the circulation

1 albumin binding in alkalosis
Acute pancreatitis with formation of Ca soaps

– Transfusion related citrate complexing

Biochemical Workup

- S total Ca⁺⁺, Albumin and Ionized Ca⁺⁺
- S PO₄⁺⁺
- S Mg⁺⁺
- Plasma PTH
 - Low in hypoparathyroidism
 - High in hungry bones syndrome
- 25(OH)D₃ and 1,25 (OH)D₃
- S Amylase and Lipase

HYPOCALCEMIA < 2.1 mmol/L

Diet Therapy

- Food sources of Calcium
- Supplementation

Drug Therapy

- Oral calcium
- IV Calcium (with caution)
- Vitamin D

Interventions

Protect from injury

Hypocalcemia

Treatment of hypocalcaemia

- IV calcium chloride : 3~5 ml of 10% solution
- Calcium gluconate : 10~20ml of 10% solution
- Precipitation bicarbonate phosphate solution
- Repeat bolus or continuous infusion(Ca2+ 1~2mg/kg/hr)
- Serial ionized Ca measurement
- Chronic
 - » Oral calcium(CaCO3)
 - » Vitamin D replacement

Correct serum Mg⁺⁺

- Calcium gluconate 10 ml of 10% solution
 IV over 5 10 min and repeat as necessary
 in cases with frank generalized tetany
- Slower continuous infusion of Calcium gluconate in less acute cases

Case 1

A 40 year old alcoholic was brought to the Emergency department, he was thought to be confused simply due to intoxication, but was admitted for mild alcoholic hepatitis and marked malnutrition. His mental status cleared up about 8 hours after admission. During morning rounds on hospital day #2, he complained of feeling fatigued and weak. Later that day, the nurses find him seizing. The seizures stop with low dose IV diazepam. Stat labs are sent:

Sodium – 136 meq/L Potassium – 3.2 meq/L Calcium (total) – 1.7 mmol/L Phosphate – 0.17 mmol/L Albumin – 30 g/L Creatinine – 0.014 μ mol/L CK – 3500 U/L

(normal ~ 2.1-2.5 mmol/L) (normal ~ 0.5-1.07 mmol/L) (normal ~ 0.8-1.25 mmol/L)

Case 2

A 74 year old man with a past history significant for hypertension and COPD from smoking 2 packs per day for the last 40 years. He presented to an urgent pulmonary clinic appointment with 2 months of increased cough and 5 days of "mild" hemoptysis. Upon further obtaining further history, he reports feeling fatigued, nauseous, and chronically thirsty for several weeks. His exam is significant for bilateral rhonchi (no change from baseline lung exam) and absent reflexes. Stat labs are ordered from clinic:

Sodium -138 meq/LCBC, PT/PTT - WNLPotassium -3.7 meq/LPTH -102 ng/L (8-60)Magnesium -0.45 mmol/LAlbumin -45 g/LCalcium (total) -3.2 mmol/LPhosphate -0.3 mmol/LCreatinine -0.7 mmol/L (baseline creatinine = 1.1)

Case 3

65 male with bone pains and known carcinoma prostate.

Hb 10.1	(13.0-18.0)	Calcium	3.2 (2.2-2.6)
WCC	9.7 (4.9-11.0)	Phosphate	0.89 (0.85-1.45)
Plt	222 (150-400)	Albumin	35 (35-50)
ESR	25	Alk Phos	985 (25-96)
Clotting	Normal	Total protein	65 (60-80)
Urea	7.5 (3.0-6.5)	LFTs	normal
Creat	112 (35-120)		